Pyrylium-mediated Transformations of Natural Products. Part 8.1 Kinetics of Nucleophilic Displacements with Pyridines as Leaving Groups in Aqueous Solution.

Alan R. Katritzky* and Asensio Gonzalez-Gazulla
Department of Chemistry, University of Florida, Gainesville, Florida 32611, U.S.A.

Abstract

Good second-order kinetics were found with k_{2} values which were ca. 50 times less for piperidine displacements in $\mathrm{H}_{2} \mathrm{O}$ than in chlorobenzene solutions, as expected from the polarity increase. Rates for thioglycolate dianion displacements were about five times faster than for piperidine. The rate dependence on pyridine leaving group structure paralleled that previously found for non-aqueous solutions except that an additional SO_{3}^{-}substituent group showed a small rate-decreasing effect.

Earlier Parts have described the preparation of water-soluble pyrylium salts containing one or more sulphonic or carboxylic acid groups attached to aryl groups in the pyrylium ring. We have reported the kinetics of the reactions of such pyrylium salts with water and the equilibria existing between the pyrylium salt, the corresponding unsaturated 1,5 -diketone, and the enolate anion of this diketone. ${ }^{2}$ We also previously considered the reactions of such pyrylium salts with primary amines from both the kinetic ${ }^{3}$ and preparative points of view. ${ }^{4}$ Finally we have shown that the corresponding pyridinium salts can undergo nucleophilic displacement reactions in which the pyridine behaves as the leaving group. ${ }^{1}$ In all these respects, the watersoluble pyrylium-pyridinium chemistry parallels that previously carried out in non-aqueous solvents. ${ }^{5}$

This paper is concerned with the kinetics of the nucleophilic displacement reactions occurring in aqueous solution and was undertaken to give information that should be of assistance in applying this method for the conversion of primary amino functionality into other groups under mild conditions in aqueous solution.

Preparation of Compounds.-The pentacyclic pyrylium perchlorate (5a) was prepared by the previously reported method. ${ }^{1}$ Four further pyrylium perchlorates (1a)-(4a) were prepared by two different approaches depending on the type of product: (a) for the symmetrical pentacyclic compound (4a), x tetralone (2.5 mol) and the appropriately functionalised benzaldehyde (1 mol) were condensed with perchloric acid; (b) for the unsymmetrical tricyclic compounds (1a)-(3a), the intermediate chalcone was reacted with the corresponding methyl ketone.

A series of pyridinium salts was prepared (Tables 1 and 2) from pyryliums (1a)-(5a). Two methods were used: (a) each pyrylium was reacted with benzylamine and n-butylamine in methylene dichloride; subsequent addition of acetic acid yielded the corresponding pyridinium salts; ${ }^{6}$ (b) reactions with lysine and glycylglycine were carried out in aqueous buffer solution at pH 10; acidification with perchloric acid gave the products. ${ }^{1}$
N.m.r. Spectra.-The pyridinium salts, all of which had m.p. $>300^{\circ} \mathrm{C}$, and which in some cases gave poor analytical results, were all characterised by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra [Supplementary Publication No. SUP 56313 (8 pp .) \dagger], obtained in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, showed the characteristic methoxy singlet near $\delta 4.15$ [except for ($\mathbf{4 b}$ and \mathbf{c})] and the multiplet for $\mathrm{CH}_{2} \mathrm{CH}_{2}$ near $\delta 3$. The x-methylene group

[^0]Table 1. N -Substituted pyridinium perchlorates; preparation

Compound	Recrystallisation solvent	Colour ${ }^{\text {a }}$	Procedure	Yield (\%)
(1b)	Acetone	Orange	A	64
(2b)	Acetone- $\mathrm{Et}_{2} \mathrm{O}$	Yellow	A	65
(3b)	Acetone- $\mathrm{Et}_{2} \mathrm{O}$	Yellow	A	68
(4b)	Acetone	Orange	A	63
(5b)	$\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$	Pale yellow	A	46
(1c)	Acetone	Orange	A	55
(2c)	Acetone- $\mathrm{Et}_{2} \mathrm{O}$	Yellow	A	53
(3c)	Acetone- $\mathrm{Et}_{2} \mathrm{O}$	Yellow	A	58
(4c)	Acetone	Orange	A	54
$(5 \mathrm{c})^{\text {b }}$	$\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$	Pale yellow	A	57
(2d) ${ }^{\text {c }}$	$\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$	Yellow	B	42
(5d) ${ }^{\text {b.c }}$	$\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$	Orange	B	69
$(5 e)^{b}$	EtOH	Yellow	B	39

${ }^{a}$ All crystallised as prisms and had m.p. $>300^{\circ} \mathrm{C}$. ${ }^{b}$ Identical by spectral comparison with compounds described in ref. 5. ${ }^{\text {' Bisper- }}$ chlorate.
in the N-substituent appears at $\delta 5.1-5.75$ for the N-benzyland N-glycyl-glycine derivatives. These shifts are downfield from the corresponding shifts obtained in $\mathrm{D}_{2} \mathrm{O}^{4 a}$ for watersoluble $2,4,6$-triarylpyridinium salts. Integration of the aromatic region using the OMe and $\mathrm{CH}_{2} \mathrm{CH}_{2}$ peaks as standard shows acceptable agreement between the values expected and those actually found.
The ${ }^{13} \mathrm{C}$ n.m.r. spectra provided excellent criteria for both structure and purity. Chemical shifts for the pyrylium ring carbon atoms of pyrylium salts (1a)-(5a) are given in SUP 56313. The symmetrical compounds (4a) and (5a) gave just three peaks and the unsymmetrical compounds (1a)-(3a) five peaks in this region: the positions for the individual $x(\delta 165.0-$ 170.3 p.p.m.), β ($\delta 118.2-126.3$ p.p.m.), and $\gamma(\delta 166.0-168.4$ p.p.m.) carbon atoms are very close to those reported for analogous compounds without water-solubilising groups. ${ }^{7}$ The same applies for (1a) (C-2, $\delta 170.3 ; \mathrm{C}-3,120.5$; $\mathrm{C}-4,166.1$; $\mathrm{C}-5$, 126.3; C-6, 166.1 p.p.m.) compared with the reported ${ }^{4}$ 2-(4-carboxyphenyl)-substituted compound (C-2, $\delta 170.5$; C-3, 119.5; C-4, 166.2; C-5, 126.0; C-6, 165.5 p.p.m.). The other peaks for (1a)-(5a) are recorded in SUP 56313; some of the assignments are tentative.

The ${ }^{13} \mathrm{C}$ n.m.r. spectra of the pyridinium salts are recorded in SUP 56313. The five [or three for symmetrical (1) and (2) derivatives] peaks for the pyridinium ring carbon atoms are clearly observed in the expected regions: the $x(\delta 153.1-158.3$ p.p.m.), β ($\delta 126.2-128.5$ p.p.m.), and $\gamma(\delta 151.8-158.4$ p.p.m.) positions are in agreement with previous work. ${ }^{4.7}$

The N-substituent peaks (SUP 56313) are also clearly

(1)

(3)

(2)

(4)
$a ; Z=0^{+}, \mathrm{ClO}_{6}^{-}$
$b: Z=\mathrm{N}^{+} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{ClO}_{6}{ }^{-}$
$c: Z=N^{+} \mathrm{Bu}^{n}, \mathrm{ClO}_{4}{ }^{-}$
$d: Z=N^{+}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}, \mathrm{ClO}_{4}{ }^{-}$
e: $\mathrm{Z}=\mathrm{N}^{+} \mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{ClO}_{4}{ }^{-}$

(7)

(8)
distinguished: (a) the N-butyl substituent shows the $\alpha-\mathrm{CH}_{2}$ group at $\delta 65.0-66.9$ p.p.m. and the β-, γ-, and δ-carbon atoms at $\delta 32.4-32.8,18.8-19.8$, and $12.0-13.5$ p.p.m., respectively; (b) for the lysine substituent, the $\alpha-\mathrm{CH}_{2}$ group appears at δ $63.2-64.3$ p.p.m. and the β-, γ-, δ-, and ε-carbon atoms at δ $29.5-29.7,21.3-21.9,24.6-25.1$, and $54.0-54.1$ p.p.m.,
respectively; (c) the glycylglycine derivative depicts the $\alpha-\mathrm{CH}_{2}$ group at $\delta 65.0$ p.p.m. and the $\beta-, \gamma-$, and δ-carbon atoms at δ $170.9,41.5$, and 174.2 p.p.m., respectively; (d) for the N-benzyl compounds, the CH_{2} peak is clearly observed at $\delta 64.1-66.8$ p.p.m.; the assignments for the phenyl carbon atoms, however, are tentative.

Table 2. N-Substituted pyridinium perchlorates; elemental analyses

Compound	Found (\%)			Molecular Formula	Required (\%)		
	C	H	N		C	H	N
(1b)	54.5	4.6	3.2	$\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{ClNO}_{11} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	53.0	4.0	1.9
(2b)	55.7	4.5	2.1	$\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{ClNO}_{8} \mathrm{~S} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	56.3	4.9	2.0
(3b)	57.7	4.1	2.6	$\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	57.6	4.1	4.0
(4b)	51.1	3.9	1.8	$\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{ClNNa}_{2} \mathrm{O}_{10} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	51.7	3.8	1.8
(5b)	63.0	4.7	2.8	$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{ClNO}_{8} \mathrm{~S}$	63.7	4.6	2.1
(1c)	48.2	4.9	2.8	$\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClNNaO}_{11} \mathrm{~S} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	47.8	4.4	1.9
(2c)	53.6	4.6	1.4	$\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClNNaO} 8 \mathrm{~S}^{2} 3 \mathrm{H}_{2} \mathrm{O}$	53.5	4.9	2.1
(3c)	56.3	4.6	2.4	$\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$	56.7	4.5	2.1
(4c)	47.5	4.3	2.1	$\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{ClNNa}_{2} \mathrm{O}_{10} \mathrm{~S}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	48.1	4.4	1.8
(2d)	49.5	4.6	3.7	$\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{~S}$	49.8	4.3	3.6

Table 3. First- $\left(k_{1}\right)$ and second- $\left(k_{2}\right)$ order rate constants for the reactions of N-substituted pyridinium perchlorates with piperidine in water at $80^{\circ} \mathrm{C}$

Compound	N^{a}	$r^{\text {b }}$	Slope		Intercept		$10^{3} k_{1} /\left(k_{2}+10 k_{1}\right)^{e}$
			$\overbrace{10^{5} k_{2} / \mathrm{l} \mathrm{mol}^{-1} \mathrm{~s}^{-1 \mathrm{c}}}$	\% error in k_{2}	$\overbrace{10^{6} k_{1} / \mathrm{s}^{-1 c, d}}$	\% error	
(1b)	4	0.9999	34.8 ± 1.1	3	171 ± 52	30	33
(2b)	3	0.9999	58.9 ± 3.9	7	(0 ± 20)		2
(3b)	3	0.9999	243 ± 15	6	$\leqslant 6(-4 \pm 10)$		2
(4b)	3	0.9988	640 ± 200	31	(100 ± 100)		24
(5b)	5	0.9992	2210 ± 120	5	287 ± 26	9	11
(1c)	3	0.9999	0.0805 ± 0.0011	2	$\leqslant 0.04(-0.02 \pm 0.06)$		33
(2c)	3	0.9995	0.091 ± 0.017	19	$\leqslant 0.7(-0.2 \pm 0.9)$		88
(3c)	3	0.9998	0.162 ± 0.017	10	$\leqslant 0.6(-0.2 \pm 0.8)$		79
(4c)	3	0.9999	0.375 ± 0.011	2	(0.0 ± 0.4)		56
(5c)	4	0.9975	2.06 ± 0.29	14	(0 ± 17)		90
(2d)	3	0.9995	1.31 ± 0.25	19	(0 ± 10)		88
(5d)	5	0.9912	15.8 ± 2.8	18	(66 $\pm 70)$		90
(5e)	4	0.9946	18.7 ± 4.0	21	$\leqslant 46(-30 \pm 76)$		72

${ }^{a}$ Number of runs. ${ }^{b}$ Correlation coefficient. ${ }^{c} 90 \%$ Confidence limit. ${ }^{d}$ Values in parentheses are not significantly different from zero. ${ }^{e} \boldsymbol{k}_{1}$ in $\mathrm{s}^{-1}, \boldsymbol{k}_{2}$ in $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$, i.e. percentage reaction by $S_{\mathrm{N}} 1$ route at $[\mathrm{Nucleophile}]=10^{-1} \mathrm{~m}$.

The shifts for the substituent carbons are in the same range as previously reported for the same N-substituents of watersoluble pyridiniums in $\mathrm{D}_{2} \mathrm{O}^{4}$ and for other pyridiniums in $\mathrm{CDCl}_{3},{ }^{7}$ except that the α-carbon atom shifts are at lower field than for the corresponding monocyclic pyridiniums.

The remaining peaks are given in SUP 56313. Some of the assignments are clear, particularly for OCH_{3} ($\delta 55.7-56.1$ p.p.m.) and $\mathrm{CH}_{2} \mathrm{CH}_{2}$ ($\delta 26.1-28.3$ p.p.m.) in the aliphatic region corresponding peaks were previously described. ${ }^{4.7}$ However, in the aromatic region, although the assignments for 1^{\prime} - and 4^{\prime}-carbon atoms are clear, ${ }^{4}$ those for the other peaks are tentative.

Reactions with Piperidine.-These reactions were carried out at $80^{\circ} \mathrm{C}$ in water and followed spectrophotometrically under pseudo-first-order conditions, as already described. ${ }^{8}$ Observed rate constants were calculated from the slope of the plots of \ln [$a /(a-x)]$ versus time (see Experimental section). Such plots showed linearity up to 80% conversion, except for the tricyclic N-butyl substituted compounds (1c)-(3c), which exhibited curvature after 50% conversion possibly because of competitive ring opening to the divinylogous amide. Plots of the pseudo-first-order rate constants versus nucleophile concentration gave straight lines which passed through the origin within experimental error except for (4b) and (5b). The reasons for these nonzero intercepts are discussed in the following paper. ${ }^{9}$ The k_{2} and k_{1} constants, derived from the slopes and intercepts, respectively, of the plots are collected in Table 3.

In Table 6, the k_{2} values of Table 3 are compared with those for the analogous compounds (without water-solubilising
groups) (6)-(8) for the reaction with piperidine in chlorobenzene solution. The following conclusions are apparent.
(a) In the pentacyclic series the rate constants in $\mathrm{H}_{2} \mathrm{O}$ are less than those in PhCl by factors of 90 and 300 for the N-benzylsubstituted compounds (5b) and (4b), respectively. In the tricyclic series the rate constants in $\mathrm{H}_{2} \mathrm{O}$ are less than in PhCl by factors of 160 and 280 for the N-benzyl-substituted compounds (2b) and (1b), respectively. ${ }^{10}$

We have shown earlier that the rate constants of these reactions decrease with increasing solvent polarity: ${ }^{11,12}$ there is a correlation between $\log k_{2}$ and the E_{T} solvent parameter ${ }^{13}$ of the form $\log k_{2}=-0.064 E_{\mathrm{T}}+0.141$. Using E_{T} values of 63.1 and 37.4 for water and chlorobenzene, ${ }^{13}$ respectively, the rate constants in water should be 0.0022 times those in chlorobenzene; this figure is in general agreement with the results of Table 6.
(b) The introduction of SO_{3}^{-}substituents is rate reducing: thus (4) is slower than (5) by factors of 3.5 and 6.5 in the N benzyl and N-n-butyl series; (1) is slower than (2) by factors of 1.7 and 1.1 in the same two series. This abnormal effect of the sulphonate anion is discussed in the following paper. ${ }^{9}$
(c) The overall order of the rates for leaving groups of (5), (4) $>(3)>(2),(1)$ is as expected from the work in chlorobenzene solution. ${ }^{10,14,15}$

Reactions with Thioglycolate Dianion.-Runs were carried out at $80^{\circ} \mathrm{C}$ in water at $\mathrm{pH} c a .12$ ($\mathrm{p} k_{1} 3.68, \mathrm{p} k_{2} 10.68$ for thioglycolic acid: ${ }^{16}$ thus the majority species was the dianion).
The pseudo-first-order plots showed linearity up to 80% conversion, except for the tricyclic N-butyl-substituted

Table 4. First- $\left(k_{1}\right)$ and second- $\left(k_{2}\right)$ order rate constants for the reactions of N-substituted pyridinium perchlorates with $-\mathrm{SCH}_{2} \mathrm{CO}_{2}{ }^{-}$in water at $80^{\circ} \mathrm{C}$

Compound	N^{a}	Slope			Intercept			$\begin{gathered} k_{2} \text { (thioglycolate)/ } \\ k_{2} \text { (piperidine) } \end{gathered}$
		r^{b}	$10^{5} k_{2} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \mathrm{c}$	\% error in k_{2}	$10^{6} k_{1} / \mathrm{s}^{-1 \text { c.d }}$	$\%$ error in intercept	$10^{3} k_{1} /\left(k_{2}+10 k_{1}\right)^{e}$	
(1b)	3	0.9989	155 ± 45	29	82 ± 20	30	35	4.5
(2b)	4	0.9991	183 ± 16	8	92 ± 10	12	33	3
(3b)	3	0.9988	1830 ± 550	30	$<47(6 \pm 40)$		<2.5	7.5
(4b)	3	0.9999	5650 ± 55	1	21 ± 2	7	36	9
(5b)	4	0.9991	22200 ± 1900	8	$<100(40 \pm 60)$		<0.4	10
(1c)	3	0.9999	0.631 ± 0.026	4	$0.4(0.03 \pm 0.40)$		<37	8.5
(2c)	3	0.9995	0.718 ± 0.027	4	$<0.45(0.04 \pm 0.40)$		<38	8
(3c)	3	0.9999	0.807 ± 0.011	2	$<0.3(0.09 \pm 0.20)$		<27	5
(4c)	3	0.9999	1.81 ± 0.04	2	$<0.6(-0.02 \pm 0.60)$		<25	5.7
(5c)	3	0.9996	8.94 ± 0.15	16	$<20.5(-2 \pm 23)$		<70	4.3
(2d)	3	0.9999	1.52 ± 0.11	7	$<6(-1 \pm 7)$		<80	1.2
(5d)	4	0.9959	5.8 ± 1.1	18	$<30(12 \pm 15)$		<84	0.4
(5e)	4	0.9886	188 ± 59	31	$<51(-9 \pm 60)$		<21	10

${ }^{a}$ Number of runs. ${ }^{b}$ Correlation coefficient. ${ }^{c} 90 \%$ Confidence limit. ${ }^{d}$ Values in parentheses are not significantly different from zero. ${ }^{e}$ i.e. percentage reaction by $S_{\mathrm{N}} 1$ route at [Nucleophile] $=10^{-1} \mathrm{M}\left(k_{1}\right.$ in s^{-1}, k_{2} in $1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ units).

Table 5. First- $\left(k_{1}\right)$ and second- $\left(k_{2}\right)$ order rate constants for the reactions of 14-benzyl-5,6,8,9-tetrahydro-7-(4-methoxy-3-sulphophenyl)dibenzo $[c, h]$ acridinium perchlorate (5b) with nucleophiles in water at $80^{\circ} \mathrm{C}$

Nucleophile	N^{a}	r^{b}	Slope		Intercept		$10^{3} k_{1} /\left(k_{2}+10 k_{1}\right)^{e}$	k_{2} / k_{2} (piperidine) parent compound	$\begin{gathered} k_{2} / k_{2}(\text { piperidine })^{17} \\ \text { MeI } \end{gathered}$
			$10^{5} k_{2}$	\% error	$10^{6} k_{1}{ }^{\text {c.d }}$	\% error			
${ }^{-} \mathrm{SCH}_{2} \mathrm{CO}_{2}{ }^{-}$	4	0.9991	22200 ± 1900	8	$100(40 \pm 60)$		0.4	10	5.0
Piperidine	5	0.9992	2210 ± 120	5	287 ± 26	9	11	1	1
NaN_{3}	3	0.9999	1360 ± 30	2	274 ± 8	3	17	0.62	0.030
$\mathrm{NH}_{2} \mathrm{CSNH}_{2}$	4	0.9938	880 ± 20	23	303 ± 66	22	26	0.39	0.93
KI	4	0.9948	610 ± 130	21	334 ± 52	16	35	0.28	1.3
KSCN	3	0.9996	610 ± 100	16	317 ± 46	15	34	0.28	0.25
Pyridine	4	0.9944	104 ± 23	22	280 ± 30	11	73	0.047	0.0085
KBr	3	0.9999	96.4 ± 8.1	8	299 ± 8	3	76	0.044	0.031

${ }^{a}$ Number of runs. ${ }^{b}$ Correlation coefficient. ${ }^{c} 90 \%$ Confidence limit. ${ }^{d}$ Values in parentheses are not significantly different from zero. ${ }^{e}$ i.e. percentage reaction by $\bar{S}_{\mathrm{N}} 1$ route at [Nucleophile] $=10^{-1} \mathrm{M}$.

Table 6. Comparison of second-order rate constants k_{2} in water and in chlorobenzene solution for reactions with piperidine

Series	$10^{3} k_{2} / \mathrm{mmo}^{-1} \mathrm{~s}^{-1} .(\mathrm{PhCl})$ at $80^{\circ} \mathrm{C}$		${ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) / k_{2}(\mathrm{PhCl})$ at $80{ }^{\circ} \mathrm{C}$	
	N-benzyl	N-n-butyl	N-benzyl	N-n-butyl
(1)	$96.6{ }^{\text {a }}$	$0.127^{\text {b }}$	0.0036	0.0063
(2)	96.6		0.0061	0.0072
(3)	c	$0.35{ }^{\text {d }}$		0.0046
(4)	$1960^{\text {a }}$	$0.575{ }^{\text {e }}$	0.0033	0.0055
(5)	1960		0.0113	0.0358

${ }^{a}$ Measured at $80^{\circ} \mathrm{C}$ in PhCl from ref. $10 .{ }^{b}$ Extrapolated from value measured at $100^{\circ} \mathrm{C}$ in PhCl from ref. 14, using $\Delta H_{373}^{4} 20 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta S_{373}^{\ddagger}-20 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1} .{ }^{c}$ Not described. ${ }^{d}$ Extrapolated from value measured at $100^{\circ} \mathrm{C}$ in PhCl from ref. 15 , using $\Delta H_{373}^{\ddagger} 20 \mathrm{kcal}$ mol^{-1} and $\Delta S_{373}^{t}-18 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. ${ }^{e}$ Extrapolated from value measured at $100^{\circ} \mathrm{C}$ in PhCl from ref. 14, using $\Delta H_{373}^{4} 20 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta S_{373}{ }^{\ddagger}-17 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
compounds (1c)-(3c), which exhibited curvature after 50% conversion. Plots of the pseudo-first-order rate constants versus nucleophile concentration gave straight lines which passed through the origin within the experimental error except for (1b), (2b), and (4b). The reasons for these non-zero intercepts are discussed in the following paper. ${ }^{9}$ Table 4 lists the k_{2} and k_{1} rate constants and also gives the ratios k_{2} (thioglycolate)/ k_{2} (piperidine). Except for the lysine derivatives, an exception which is explained later, the rates are all substantially faster (by
a factor of 3-10) for the thioglycolate dianion. This rate increase is expected: HS^{-}reacts with MeI more rapidly than piperidine by a factor of 5 in MeOH at $25^{\circ} \mathrm{C} .{ }^{17}$

Reaction of Lysine and Glycylglycine Derivatives.-The lysine derivatives (2 d) and (5 d) react with piperidine 14 and 8 times as rapidly as do their N-n-butyl analogues. The increased reactivity found with piperidine may be rationalised in terms of hydrogen-bonding of the piperidine NH with the CO_{2}^{-}group of the lysine residue in the transition state: no such effect applies to the reaction with thioglycolate as nucleophile. This hydrogen-bonding would also explain the low ratios found for the lysine derivatives in the last column of Table 4.

The corresponding factors for the glycylglycine derivative (5e) are 9 and 21. These significant factors are in marked contrast to the low reactivity found for the N-ethoxycarbonylmethyl derivatives in the 2,4,6-triphenylpyridinium series: ${ }^{18}$ this was ascribed to steric prevention of overlap of the $\mathrm{C}-\mathrm{N} \sigma$-bond with the π-orbital of $\mathrm{C}=\mathrm{O}$ during the nucleophilic approach. Examination of models shows that, in the pentacyclic series, the substituted carbonyl group is less constrained, and offers more possibility for overlap of the incoming nucleophile with the $\mathrm{C}=\mathrm{O}$ π^{*} orbital, thus enhancing the rate in the normal manner found for rates of α-substituted carbonyl compounds.

Reaction of Pentacyclic N-Benzylpyridinium (5b) with Various Nucleophiles.-The k_{2} and k_{1} values are collected in Table 5. Comparison of the k_{2} / k_{2} (piperidine) values for the parent compounds and for the reaction of the same nucleophiles with

MeI in methanol at $25^{\circ} \mathrm{C}^{17}$ (last column of Table 5) shows correspondence within a factor of 2 except for N_{3}^{-}and for pyridine (which react much more rapidly than expected), and for I^{-}(which reacts less rapidly).

Experimental

${ }^{1}$ H N.m.r. spectra were recorded with a Varian EM-360L spectrometer; a JEOL FX-100 spectrometer was used for ${ }^{13} \mathrm{C}$ n.m.r. spectra; SiMe_{4} was used as internal reference. U.v. spectra were obtained on a Pye-Unicam SP 8-200 spectrophotometer and i.r. spectra were run on a Perkin-Elmer 297 spectrophotometer.

The following compounds were made by the literature methods quoted: sodium 3-formyl-6-methoxybenzenesulphonate, ${ }^{4 a}$ 2-acetylbenzothiazole, ${ }^{19}$ sodium 5-(1-oxo-2-tetralinyl-idenemethyl)-2-methoxybenzenesulphonate, ${ }^{4 a}$ 5,6,8,9-tetra-hydro-7-(4-methoxy-3-sulphophenyl)dibenzo[$c, h]$ xanthylium perchlorate (5a), ${ }^{1}$ 14-butyl-5,6,8,9-tetrahydro-7-(4-methoxy-3sulphophenyl)dibenzo[$c, h]$ acridinium perchlorate (5c), ${ }^{1}$ 14-(5-carboxy-5-aminopentyl)-5,6,8,9-tetrahydro-7-(4-methoxy-3sulphophenyl)dibenzo[$c, h]$ acridinium perchlorate (5d), ${ }^{1}$ and 14-(carboxymethylcarbamoylmethyl)-5,6,8,9-tetrahydro-8-(4-methoxy-3-sulphophenyl)dibenzo $[c, h]$ acridinium perchlorate (5e). ${ }^{1}$

5,6,8,9-Tetrahydro-7-(2,4-disulphophenyl)dibenzo[c,h]xanthylium Perchlorate (4a).-Perchloric acid ($70 \%, 2.5 \mathrm{ml}$) was added dropwise to sodium 4 -formylbenzene-1,3-disulphonate $(2.5 \mathrm{~g}, 8.7 \mathrm{mmol}), \alpha$-tetralone $(3.2 \mathrm{~g}, 0.022 \mathrm{~mol})$, and acetic anhydride (2.5 ml) with stirring. The temperature was kept at $100^{\circ} \mathrm{C}$ for 1.5 h . On cooling to room temperature, $1: 1$ acetoneether (50 ml) was added to give a yellow solid. The precipitated perchlorate was filtered off, washed with anhydrous ether ($3 \times$ 20 ml), and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ to give the product as yellow prisms $(1.7 \mathrm{~g}, 31 \%)$, m.p. $>300^{\circ} \mathrm{C}$ (Found: C, 42.4; H, 3.0. $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{ClNa}_{2} \mathrm{O}_{11} \mathrm{~S} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 42.9 ; \mathrm{H}, 3.8 \%$).

5,6-Dihydro-2-phenyl-4-(4-methoxy-3-sulphophenyl)benzo-

 [h]chromenylium Perchlorate (2a).-Perchloric acid (70\%, 2 ml) was added dropwise to sodium 5-(1-oxo-2-tetralinyl-idenemethyl)-2-methoxybenzonesulphonate ($2 \mathrm{~g}, 5.5 \mathrm{mmol}$), acetophenone ($0.65 \mathrm{~g}, 5.5 \mathrm{mmol}$), and acetic anhydride (5 ml) with stirring. The temperature was kept at $100^{\circ} \mathrm{C}$ for 1 h . On cooling to room temperature $1: 1$ acetone-ether (50 ml) was added to give a yellow solid. The precipitated perchlorate was filtered off, washed with anhydrous ether ($3 \times 20 \mathrm{ml}$), and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ to give the product as yellow prisms $(1.5 \mathrm{~g}, 49 \%)$, m.p. $>300^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 47.3$; $\mathrm{H}, 4.9 . \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClNaO}{ }_{9} \mathrm{~S} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 47.5 ; \mathrm{H}, 4.6 \%$).5,6-Dihydro-2-(4-sulphophenyl)-4-(4-methoxy-3-sulphophenyl)benzo[h]chromenylium Perchlorate (1a).-Perchloric acid $(70 \%, 3 \mathrm{ml})$ was added dropwise to sodium 5-(1-oxo-2-tetralinylidenemethyl)-2-methoxybenzenesulphonate ($25 \mathrm{~g}, 6.83$ mmol), sodium 4-acetylbenzenesulphonate ($1.5 \mathrm{~g}, 6.83 \mathrm{mmol}$), and acetic anhydride (7 ml) with stirring. The temperature was kept at $100^{\circ} \mathrm{C}$ for 1 h . On cooling to room temperature, acetone $(25 \mathrm{ml})$ was added to give a yellow solid. The precipitated perchlorate was filtered off, washed with anhydrous ether ($3 \times$ 25 ml), and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ to give the product as yellow prisms $(2 \mathrm{~g}, 47 \%)$, m.p. $>300^{\circ} \mathrm{C}$ (Found: C, 42.9; H, 3.7. $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClO}_{12} \mathrm{~S}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 43.4 ; \mathrm{H}, 3.9 \%$).

5,6-Dihydro-2-(benzothiazolyl)-4-(4-methoxy-3-sulphophenyl)benzo[h ch chomenylium Perchlorate (3a).-Perchloric acid $(70 \%, 5 \mathrm{ml})$ was added dropwise to sodium 5-(1-oxo-2-tetralinylidenemethyl)-2-methoxybenzenesulphonate ($5 \mathrm{~g}, 13.6$
mmol), 2-acetylbenzothiazole ($2.4 \mathrm{~g}, 13.6 \mathrm{mmol}$), and acetic anhydride (12 ml) with stirring. The temperature was kept at $100^{\circ} \mathrm{C}$ for 1 h . On cooling to room temperature, $1: 1$ acetoneether (50 ml) was added to give a yellow solid. The precipitated perchlorate was filtered off, washed with anhydrous ether ($3 \times$ 30 ml), and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ to give the product as yellow prisms $\left(3.3 \mathrm{~g}, 44 \%\right.$), m.p. $>300^{\circ} \mathrm{C}$ (Found: C, 51.8; H, 3.6. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{ClO}_{9} \mathrm{NS}_{2}-1 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 52.3 ; \mathrm{H}, 3.6 \%$).

Preparation of Pyridinium Perchlorates (Table 1).-Method A. To a suspension of the pyrylium (2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise a solution of the amine (6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$. The mixture was stirred for 1 h at room temperature. $\mathrm{AcOH}(1 \mathrm{ml})$ was added, and the red solution stirred for 1 h . Dilution with ether (150 ml) gave a solid which was filtered off, stirred with $1: 1$ acetone-ether (40 ml) containing HClO_{4} (4 drops). The pyridinium salt was filtered off, washed with anhydrous ether ($3 \times 15 \mathrm{ml}$), and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$.
Method B. The pyrylium salt (2 mmol) was added portionwise with stirring over a period of 6 h to the amine hydrochloride (5.5 mmol) in buffer solution ($10 \mathrm{ml} ; \mathrm{pH} \mathrm{10}$). After stirring at $25^{\circ} \mathrm{C}$ for 48 h , the reaction mixture was acidified with $70 \% \mathrm{HClO}_{4}(\mathrm{pH} 2-3)$. The gum formed was washed with water and dissolved in hot ethanol. Dropwise addition to a large excess of ether ($250-300 \mathrm{ml}$) gave a solid. The pyridinium was filtered off, washed with anhydrous ether (3 $\times 15 \mathrm{ml}$), and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$.

Kinetic Measurements.-Kinetics were followed by u.v. spectrophotometry, monitoring the decrease of absorbance of pyridinium cation at a fixed wavelength, using the procedure already described. ${ }^{11}$ In typical runs under pseudo-first-order conditions the concentration of pyridinium was $c a .10^{-5} \mathrm{~mol} \mathrm{l}^{-1}$.
Pseudo-first-order rate constants ($k_{\text {obs }}$.) were calculated from the plot of $\ln [a /(a-x)]=\ln \left[\left(\varepsilon_{1}-\varepsilon_{2}\right) /\left(\varepsilon-\varepsilon_{2}\right)\right]$ versus time. The extinctions coefficients of the pyridiniums $\left(\varepsilon_{1}\right)$ are recorded in SUP 56313, the extinction coefficients of the corresponding pyridines $\left(\varepsilon_{2}\right)$ being zero at the kinetic wavelength. First- and second-order rate constants k_{1} and k_{2} were obtained from the plots of $k_{\text {obs. }}$ versus nucleophile concentration. For the definition and calculation of errors and for the estimation of the precision of $k_{\text {obs. }}$ see ref. 8 .

Acknowledgements

We thank Dr. M. L. Lopez-Rodriguez for help with this work and the U.S.A.-Spain Joint Committee for Scientific and Technological Cooperation for a grant (to A. G. G.).

References

1 Part 7, A. R. Katritzky and Y.-K. Yang, J. Chem. Soc., Perkin Trans. 2, 1984, 885.
2 A. R. Katritzky, M. de Rosa, and N. E. Grzeskowiak, J. Chem. Soc., Perkin Trans. 2, 1984, 841.
3 (a) A. R. Katritzky, J. L. Mokrosz, and M. De Rosa, J. Chem. Soc., Perkin Trans. 2, 1984, 849; (b) A. R. Katritzky and D. Leahy, ibid., 1984, 867.
4 (a) A. R. Katritzky, Y.-K. Yang, B. Gabrielsen, and J. Marquet, J. Chem. Soc., Perkin Trans. 2, 1984, 857; (b) A. R. Katritzky, J. L. Mokrosz, and M. L. Lopez-Rodriguez, J. Chem. Soc., Perkin Trans. 2, 1984, 875.
5 A. R. Katritzky, Tetrahedron, 1980, 36, 679.
6 A. R. Katritzky, J. M. Lloyd, and R. C. Patel, J. Chem. Soc., Perkin Trans. 1, 1982, 117.
7 A. R. Katritzky, J. M. Lloyd, and R. C. Patel, Chem. Scr., 1981, 18, 256.

8 A. R. Katritzky, Y. X. Ou, J. Ellison, and G. Musumarra, J. Chem. Soc., Perkin Trans. 2, 1983, 1421.
9 A. R. Katritzky and T. I. Yousaf, following paper.
10 A. R. Katritzky, A. M. El-Mowafy, G. Musumarra, K. Sakizadeh, C. Sana-Ullah, S. M. M. El-Shafie, and S. S. Thind, J. Org. Chem., 1981, 46, 3823.
11 A. R. Katritzky, G. Musumarra, K. Sakizadeh, and M. MisicVukovic, J. Org. Chem., 1981, 46, 3820.
12 G. Musumarra, F. P. Ballistreri, S. Muratore, A. R. Katritzky, and S. Wold, J. Chem. Soc., Perkin Trans. 2, 1982, 1049.
13 C. Reichard, Angew. Chem., Int. Ed. Engl., 1979, 18, 98.
14 A. R. Katritzky, K. Sakizadeh, Y. X. Ou, B. Jovanovich, G.

Musumarra, F. P. Ballisteri, and R. Crupi, J. Chem. Soc., Perkin Trans. 2, 1983, 1427.
15 A. R. Katritzky, J. Z. Brzezinski, Y. X. Ou, and G. Musumarra, J. Chem. Soc., Perkin Trans. 2, 1983, 1463.
16 Beilstein's Handbuch der Organischen Chemie, vol. 3, sect II, p. 175.
17 R. G. Pearson, H. Sobel, and J. Sonstad, J. Am. Chem. Soc., 1968, 90, 319.

18 A. R. Katritzky, W. K. Yeung, and R. C. Patel, J. Chem. Soc., Perkin Trans. 1, 1982, 2365.
19 T.Caronna, G. P. Gardini, and F. Minisci, Chem. Commun., 1969, 201.
Received 14th November 1984; Paper 4/1931

[^0]: \dagger For details of Supplementary Publications see Instructions for Authors, J. Chem. Soc., Perkin Trans. 2, 1985, Issue 1.

